Бахтизин А.Р., Макаров В.Л., Отмахова Ю.С., Сушко Е.Д. (2025). Агент-ориентированные модели эпидемий: международные тренды и реализация в российской практике // Экономические и социальные перемены: факты, тенденции, прогноз. Т. 18. № 5. С. 79–97. DOI: 10.15838/esc.2025.5.101.4
Балута В.И., Берберова М.А., Судаков В.А., Милаев А.В. (2022). Вариант мультиагентной модели городской среды для исследования эпидемических процессов // Цифровая экономика. № 3 (19). С. 77–87. DOI: 10.34706/DE-2022-03-10
Балута В.И., Осипов В.П., Сивакова Т.В. (2020). Технология комплексного моделирования эпидемиологической обстановки // Научный сервис в сети Интернет. Т. 22. С. 68–79. DOI: 10.20948/abrau-2020-51
Власов В.В., Дерябин А.М., Зацепин О.В. (2023). Математическое моделирование заболеваемости COVID-19 в Москве с применением агентной модели // Дискретный анализ и исследование операций. Т. 30. №. 2. С. 15–47. DOI: 10.33048/daio.2023.30.761
Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Сушко Г.Б. (2022). Создание суперкомпьютерной имитации общества с активными агентами разных типов и её апробация // Вестник Российской академии наук. Т. 92. № 5. С. 458–466. DOI: 10.31857/S0869587322050115
Тараник А. В. [и др.] (2023). Прогноз развития эпидемической ситуации COVID-19 в Москве в 2022–2023 годах // International Journal of Open Information Technologies. Т. 11. №. 2. С. 8–15.
Ajelli M. et al. (2010). Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infectious Diseases, 10(1), 190. DOI:10.1186/1471-2334-10-190
Amer H.M. et al. (2025). AI-based decoding of long COVID cognitive impairments in mice using automated behavioral system and comparative transcriptomic analysis. BioRxiv, 2025-05. DOI: 10.1101/2025.05.14.654036
Bedson J. et al. (2021). A review and agenda for integrated disease models including social and behavioural factors. Nature Human Behaviour, 5(7), 834–846. DOI: 10.1038/s41562-021-01136-2
Epstein J.M. (2023). Inverse generative social science: Backward to the future. Journal of Artificial Societies and Social Simulation: JASSS, 26(2), 9. DOI: 10.18564/jasss.5083
Ferguson N. et al. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London, 2020. The International Arabic Journal of Antimicrobial Agents. DOI: 10.25561/77482
Ferguson N.M. et al. (2006). Strategies for mitigating an influenza pandemic. Nature, 442(7101), 448–452. DOI: 10.1038/nature04795
Ferretti L. et al. 2024. Digital measurement of SARS-CoV-2 transmission risk from 7 million contacts. Nature, 626(7997), 145–150. DOI: 10.1038/s41586-023-06952-2
Gaudet L.A. et al. (2025). Risk of new diagnoses and exacerbations of chronic conditions after SARS-CoV-2 infection: A systematic review update. MedRxiv, 2025-05. DOI: 10.1101/2025.05.13.25326692.
Goldhaber-Fiebert J.D. et al. (2025). COVID-19 increases the rate of incident hypertension: A case-control cohort time-to-event study. MedRxiv, 2025-06. DOI: 10.1101/2025.06.09.25329275
Goldhaber-Fiebert J.D. et al. (2025). COVID-19 increases the rate of incident diabetes: A case-control cohort time-to-event study. MedRxiv, 2025-06. DOI:10.1101/2025.06.09.25329289
Hinch R. et al. (2021). OpenABM-Covid19 – An agent-based model for non-pharmaceutical interventions against COVID-19 including contact tracing. PLoS Computational Biology, 17(7), e1009146. DOI: 10.1371/journal.pcbi.1009146
Howerton E. et al. (2023). Evaluation of the US COVID-19 Scenario Modeling Hub for informing pandemic response under uncertainty. Nature Communications, 14(1), 7260. DOI: 10.1038/s41467-023-42680-x
Hunter E., Mac Namee B., Kelleher J.D. (2017). A taxonomy for agent-based models in human infectious disease epidemiology. Journal of Artificial Societies and Social Simulation, 20(3). DOI: 10.18564/jasss.3414
Kang J. Y., Aldstadt J. (2019). Using multiple scale space-time patterns in variance-based global sensitivity analysis for spatially explicit agent-based models. Computers, Environment and Urban Systems, 75, 170–183. DOI: 10.1016/j.compenvurbsys.2019.02.006
Kermack W.O., McKendrick A.G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing papers of a Mathematical and Physical Character, 115(772), 700–721. DOI: 10.1098/rspa.1927.0118
Kerr C.C. et al. (2021). Covasim: An agent-based model of COVID-19 dynamics and interventions. PLOS Computational Biology, 17(7), e1009149. DOI: 10.1371/journal.pcbi.1009149
Komissarov A. B. et al. (2021). Genomic epidemiology of the early stages of the SARS-CoV-2 outbreak in Russia. Nature Communications, 12(1), 649. DOI 10.1038/s41467-020-20880-z
Kraemer M.U. et al. (2025). Artificial intelligence for modelling infectious disease epidemics. Nature, 638(8051), 623–635. DOI: 10.1038/s41586-024-08564-w
Krivorotko O. et al. (2022). Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm. Infectious Disease Modelling, 7(1), 30–44. DOI: 10.1016/j.idm.2021.11.004
Krivorotko O., Kabanikhin S. (2024). Artificial intelligence for COVID-19 spread modeling. Journal of Inverse and Ill-posed Problems, 32(2), 297–332. DOI 10.1515/jiip-2024-0013
Lewnard J.A. et al. (2025). Long-term risk of post-acute sequelae among adults following SARS-CoV-2 or influenza virus infection: A retrospective cohort study in a large, integrated healthcare system. MedRxiv, 2025-05. DOI: 10.1101/2025.05.30.25328674
Lorig F., Johansson E., Davidsson P. (2021). Agent-based social simulation of the COVID-19 pandemic: A systematic review. JASSS: Journal of Artificial Societies and Social Simulation, 24(3). DOI: 10.18564/jasss.4601
Marshall B.D., Galea S. (2015). Formalizing the role of agent-based modeling in causal inference and epidemiology. American Journal of Epidemiology, 181(2), 92–99. DOI: 0.1093/aje/kwu274
Matsvay A. et al. (2023). Genomic epidemiology of SARS-CoV-2 in Russia reveals recurring cross-border transmission throughout 2020. Plos One, 18(5), e0285664. DOI 10.1371/journal.pone.0285664
McCabe R. et al. (2021). Communicating uncertainty in epidemic models. Epidemics, 37, 100520. DOI: 10.1016/j.epidem.2021.100520
Megiddo I. et al. (2014). Analysis of the Universal Immunization Programme and introduction of a rotavirus vaccine in India with IndiaSim. Vaccine, 32, A151–A161. DOI: 10.1016/j.vaccine.2014.04.080
Noll N.B. et al. (2020). COVID-19 Scenarios: An interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2. MedRxiv, 2020–05. DOI: 10.1101/2020.05.05.20091363
Parker J., Epstein J.M. (2011). A distributed platform for global-scale agent-based models of disease transmission. ACM Transactions on Modeling and Computer Simulation (TOMACS), 22(1), 1–25. DOI: 10.1145/2043635.2043637
Pellis L., Cauchemez S., Ferguson N.M., Fraser C. (2020). Systematic selection between age and household structure for models aimed at emerging epidemic predictions. Nature Communications, 11(1), 906. DOI: 10.1038/s41467-019-14229-4
Perez L., Dragicevic S. (2009). An agent-based approach for modeling dynamics of contagious disease spread. International Journal of Health Geographics, 8(1), 50. DOI: 10.1186/1476-072X-8-50
Russell S.J., Norvig P. (2020). Artificial Intelligence: A Modern Approach. 4th edition. Prentice Hall.
Silva P. C. et al. (2020). COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos, Solitons & Fractals, 139, 110088. DOI: 10.1016/j.chaos.2020.110088
Syrowatka A. et al. (2021). Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases. NPJ Digital Medicine, 4(1), 96. DOI: 10.1038/s41746-021-00459-8
Truszkowska A. et al. (2021). High‐resolution agent‐based modeling of COVID‐19 spreading in a small town. Advanced Theory and Simulations, 4(3), 2000277. DOI: 10.1002/adts.202000277
Zhang Z., Jalali M.S., Ghaffarzadegan N. (2025). Behavioral dynamics of epidemic trajectories and vaccination strategies: A simulation-based analysis. Journal of Artificial Societies and Social Simulation, 28(1). DOI: 10.18564/jasss.5583
Zhu K. et al. (2024). Generating synthetic population for simulating the spatiotemporal dynamics of epidemics. PLOS Computational Biology, 20(2), p.e1011810. DOI: 10.1371/journal.pcbi.1011810